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Abstract

This paper introduces a new method for detecting differential item

functioning (DIF), the unsigned Mantel-Haenszel (UMH) statistic and

compares this method with two other chi-square methods, the Mantel-

Haenszel (MH) and the absolute mean deviation (AMD) statistics, in

terms of power and agreement between expected and actual false positive

rates. Three hundred datasets included items with uniform DIF; another

three hundred datasets included items with nonuniform DIF; and the

other three hundred datasets included items with both uniform and

nonuniform DIF. All methods produced higher false positive rates than

the theoretically expected false positive rates after application of a

purification procedure. The second step of the purification procedure

produced more false positives for the MH and the UMH methods than the

first step but it reduced false positives for the AMD method. Additionally,

the two-step purification procedure reduced power in most conditions for

all three methods.

Key words: Unsigned Mantel-Haenszel statistic, absolute mean deviation

statistic, Mantel-Haenszel statistic, differential item functioning (DIF),

uniform DIF, nonuniform DIF.
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AN UNSIGNED MANTEL-HAENSZEL STATISTIC

FOR DETECTING UNIFORM AND NONUNIFORM DIF

Nohoon Kwak, Mark L. Davison, and Ernest C. Davenport, Jr.

University of Minnesota

Differential item functioning (DIF) has been an important issue in

educational and psychological measurement since the 1960's. DIF exists

if equally able individuals from different groups have different

probabilities of answering an item correctly (Holland & Thayer, 1988;

Shepard, Camilli, & Averill, 1981). Generally, it can be defined as

follows;

p(X = 1 I g, 0) p(X = 11 0),

where X, g, and 0 express a dichotomous response, a group membership,

and an ability level, respectively (Mellenbergh, 1989; Millsap & Everson,

1993). There are two kinds of DIF, uniform DIF and nonuniform DIF

(Mellenbergh, 1982). Uniform DIF occurs when the probabilities of

success on the item for one group are consistently higher than those for

the other group over all trait levels. In contrast, nonuniform DIF occurs

when there is an interaction between trait level and group membership.
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Since Holland and Thayer (1988) introduced the Mantel-Haenszel

(MH) statistic (Mantel & Haenszel, 1959) for detecting DIF, it has been

one of the most popular methods because of its computational simplicity,

ease of implementation, and usability for small samples. However,

several researchers (Hambleton & Rogers, 1989; Holland & Thayer, 1988;

Kwak, 1994; Kwak, Davenport & Davison, 1997; Rogers & Swaminathan,

1993; Swaminathan & Rogers, 1990) found that although the MH

statistic is sensitive to uniform DIF, it is relatively insensitive to

nonuniform DIF. Methods for detecting DIF should be able to detect

items with both nonuniform and uniform DIF because both appear in

empirical studies (Bennett, Rock, & Kaplan, 1987; Ellis, 1989;

Hambleton & Rogers, 1989; Linn, Levine, Hastings, & Wardrop, 1981;

Mellenbergh, 1983).

There are several methods for identifying items that exhibit DIF

but few of them identify both uniform and nonuniform DIF. Although

the logistic regression (LR) method (Rogers & Swaminathan; 1993;

Swaminathan & Rogers, 1990), the full chi-square statistic (Bishop,

Fienberg, & Holland, 1975), and the cross simultaneous item bias (CSIB)

test (Li & Stout, 1996) can detect both uniform and nonuniform DIF,

these methods have at least one flaw. One major problem of the LR
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procedure and the full chi-square statistic is that the test statistic, G2 or

x2, is not distributed as chi-square when the cell frequencies of tables are

sparse (Agresti, 1990, 1996) and this problem may be more serious for

multiple degree of freedom tests such as the LR and the full chi-square

methods than 1 degree of freedom tests such as the AMD or the MH

method. Another limitation of the LR method is lower power for

detecting uniform DIF than detecting nonuniform DIF because the test

statistic is based on a chi-square distribution with two degrees of freedom

rather than one (Clauser, Nungster, Mazor, & Ripkey, 1996;

Swaminathan & Rogers, 1990). Finally, model fitting of the LR method

is slower and more expensive to implement than the MH procedure,

particularly when combined with iterative purification procedures

(Rogers & Swaminathan, 1993; Swaminathan & Rogers, 1990). A major

problem of the CSIB test is that it requires a "valid subtest", because it is

hard to constitute a valid subtest before checking whether or not a test

contains items with DIF.

Since Holland & Thayer (1988) suggested a two-step purification

procedure, many studies have used the two-step purification procedure

but only two studies (Kwak, Davison, & Davenport, 1997; Miller &

Oshima, 1992) evaluated it systematically. Miller and Oshima (1992)
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indicated that the purification procedure reduced the false positives for

the Mantel-Haenszel statistic. Kwak, et al. (1997) found that the two-

step purification procedure reduced the false positives or increased power

for the MH, the full chi-square, and the absolute mean deviation (AMD:

Kwak, Davison, & Davenport, 1997) methods. However, these studies

used approximately the same ability groups. Therefore, their research on

the effectiveness of purification should be extended to groups with

different ability distributions.

The primary goal of the proposed paper is to introduce a new

statistic called the unsigned Mantel-Haenszel (UMH) procedure for

detecting both uniform and nonuniform DIF and to compare this method

with the MH and the absolute mean deviation (AMD) statistics. The

secondary goal is to evaluate the effect of the two-step purification

procedure for the MH, the AMD, and the UMH methods.

DIF Detection Methods

Unsigned Mantel-Haenszel (UMH) Statistic

One drawback of the MH statistic is that it is not sensitive to

nonuniform DIF (Kwak, 1994; Kwak, Davenport, & Davison, 1997;

Rogers & Swaminathan, 1993; Swaminathan, & Rogers, 1990). However,
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the proposed UMH statistic, which is a modification of the original MH

statistic, should be able to detect nonuniform DIF as well as uniform DIF.

This statistic assumes no three factor interaction. For this statistic, the

"reference" group is always the group which has the higher proportion-

correct (H) on a studied item in score group j, and the "focal" group is

always the group which has the lower proportion-correct (L) on the

studied item in score group j. The UMH statistic is based on Table 1.

Insert Table 1 Here

In Table 1, Hi, is the number of examinees who answered an item

correctly in score group j and Ho is the number of examinees who

answered the item incorrectly in score group j for the higher proportion-

correct group (i.e., the reference group). and Lo are similarly defined

for the lower proportion-correct group (i.e., the focal group) in score group

j. Ni,N,4,11, and N0 are the marginal totals. Ar; is the total number of

examinees in the jth score group. Each group, j, is conditioned on total

score and there will be as many tables as there are different score groups.

Given the totals of the 2 x 2 tables, cell counts from different 2 x 2

tables are independent. Thus, 1,./Hi, has expectation, EJE(Hd, with

6
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corresponding variance, E,Var(liv). Thus, the UMH statistic for detecting

nonuniform DIF as well as uniform DIF is

where

and

J J
11111 j)
i=1 i=1

2

0.5]

(1)
X UMH

E(Hu)

Var(H)

IVar(I-Iu)
i=1

NH At,' (2)

(3)

Ni

HiNzi
= N12

(Ni

Under the null hypothesis of conditional independence, the UMH

statistic has an asymptotic chi-square distribution with df = 1. The UMH

chi-square formula indicates that the UMH statistic equals the MH

statistic when uniform DIF exists, and the UMH statistic is always larger

than the MH statistic because the quantity "H11- E(H,,)" is always

positive in all score groups even when nonuniform DIF exists. Hence,

this statistic can detect nonuniform DIF as well as uniform DIF.

The Mantel-Haenszel and the Absolute Mean Deviation Statistics

The MH and the AMD statistics were selected for comparing the

UMH statistic because the MH method is a more powerful technique for
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detecting uniform DIF and the AMD method is a more powerful

technique for detecting nonuniform DIF (Kwak, Davison, & Davenport,

1997). These statistics are based on Table 2.

Insert Table 2 Here

The formula for the MH is

where

and

J J
- E(Ai)

j=1 j=1

IVar (Aj
j=1

NRi AT

E(A) =
Ni

1/2
z

NF;

Var(ki) Ni 2 (Ni - l)

(4)

(5)

(6)

The formula for the AMD statistic (Kwak, Davenport, & Davison, 1997) is

2X MD =A i=1

gitj I"; - Eo;

[11, VarlA j1]
J=1

8
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where

and

2N iN .N N
EDA; E(A.)11 =[ nN;

(it 2)NRiNFiNuNoi
V ar[14 E(4 j)l]

ithq

Both the MH and the AMD statistics have one degree of freedom.

Methods

(8)

(9)

The current study used 900 simulated data sets based on the

three-parameter logistic model to compare a new method, the unsigned

Mantel-Haenszel (UMH) statistic, with other chi-square statistics (MH

and AMD) for detecting DIF. Three hundred data sets include items with

uniform DIF. Another three hundred data sets include items with

nonuniform DIF. The other three hundred data sets include items with

both uniform and nonuniform DIF. In this simulation, we compared the

performance of the measures when the null hypothesis Ho: pRi = pFi is

true to examine the agreement of actual and expected false positive (FP)

rates. Further, we compared the power of the measures in three kinds of

data sets: (1) the first data sets included items with uniform DIF caused
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solely by the difference of difficulty parameters for two ICCs, (2) the

second data set included items with nonuniform DIF caused by the

difference of discrimination parameters (i.e., symmetric nonuniform DIF)

or both item difficulty and discrimination parameters (i.e. nonsymmetric

nonuniform DIF) for two ICCs, and (3) the third data set included items

with both uniform and nonuniform DIF.

Data Generation

The simulation of item response data for examinees was based on

the three-parameter logistic IRT model. The three-parameter model

(Birnbaum, 1968) can be expressed as follows:

eDai(0-121)

Pi(0) = ci+ (1 c)
1+ eDa,(3k) (10)

where P,(0) is the probability of a correct response on the ith item for a

subject with ability 0. In this function e is a constant (e = 2.71828...) and

D is a scaling constant equal to 1.702. The parameter c; is the item

pseudo-guessing parameter, bi is the item difficulty, and a, is proportional

to the slope of the item characteristic curve at the inflection point and is,

therefore, a discrimination parameter.

In the IRT model, once the item parameters are determined, the

probability of a correct response is solely a function of examinee ability.

10
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As examinee ability increases, the probability of a correct response also

increases. Using Equation (10), the probability of a correct response can

be used to generate an observable dichotomous right-wrong response by

comparing it to a random number from a uniform distribution on the

interval [0, 1]. A response was coded as correct when its associated

probability was greater than the random number and incorrect when it

was less. This procedure was used in the DATAGEN program by

Hambleton and Rovinelli (1973) to generate item responses of a single

group to an unbiased test.

For the study, one hundred unbiased data sets of a 34 item test

were generated for both the reference and the focal groups. The c

parameters were all set at 0.20 which corresponds to the random

guessing level for a five-option item. For the data simulation, a, and bi

parameters were randomly selected from the normal (1, .3) and the

normal (0, 1) distributions, respectively.

Shealy & Stout (1993) showed that the Mantel-Haenszel method

yielded good adherence to the nominal significance levels even for

differences in ability as large as one standard deviation, but Narayanan

and Swaminathan (1994) argued that the difference in ability

distribution had an effect on the MH method. This study used a one
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standard deviation difference in ability between the reference and focal

groups. The ability parameters for the reference group of 1,000

examinees were sampled from a normal distribution, N(0, 1) while the

ability parameters for the focal groups of 1,000, 500, and 200 examinees

were sampled from a normal distribution, N(-1, 1).

Simulated DIF

In the IRT framework, DIF exists when item characteristic curves

(ICC) for two groups are different (Lord, 1980). Previous simulation

studies (Donoghue, Holland, & Thayer; 1993; Rogers & Swaminathan,

1993; Swaminathan & Rogers, 1990; and Uttaro & Millsap; 1994) have

used varying amounts of simulating DIF. This study, however, used only

one level of DIF, an area of .4 between item characteristic curves (ICC)

for the reference and focal groups. One hundred different data sets for

the reference and the focal groups were generated to create one hundred

replications for each type of data set.

In simulating uniform DIF data sets, the discrimination

parameters for the two groups were held constant but the difficulty

parameters were varied. Six types of uniform DIF were generated: (1)

low b, low a; (2) low b high a; (3) moderate b, low a; (4) moderate b, high

a; (5) high b, low a; and (6) high b, low a.

12
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Nonuniform DIF data sets included both symmetric and

nonsymmetric DIF. In simulating symmetric nonuniform DIF, the

difficulty parameters for the two groups were held constant but the

discrimination parameters were varied. In simulating nonsymmetric

nonuniform DIF, both the discrimination and the difficulty parameters

for the two groups were varied. Six types of nonuniform DIF were

generated with various combination of b and a as in the uniform DIF.

In simulating mixed DIF data sets, six types of DIF were

generated: for uniform DIF (1) low b, moderate a; and (2) high b,

moderate a; for symmetric nonuniform DIF (3) low b, low a; and (4) high

b, low a; and for nonsymmetric nonuniform DIF (5) moderate b, low a;

and (6) moderate b, high a. The conditions for generating DIF on each

data set are shown in Table 3.

Insert Table 3 Here

Procedure

The chi-square statistics were computed in two steps as proposed

by Holland and Thayer (1988). First, score groups were obtained using

total scores based on all items, and then the chi-square statistics were

13

15



AERA Annual Meeting, Session 38.38, Thursday March 27th, 1997

computed for all items. Those items for which the test statistic exceeded

the critical value at a=.05 or a=.01 were identified and labeled as

potentially displaying DIF. Next, total scores were reconstituted after

eliminating items previously identified as DIF, and then the test

statistics were calculated again.

Results

This study was composed of two components. One is a false

positive error study and the other is a power study. A one between two

within factor repeated-measures design (Winer, 1962) was used to

investigate the false positive rate and the power. In this design, the

dependent variable was the false positive rate or the power, and the

independent variables were methods (i.e., MH, UMH, and AMD), steps

(i.e., with and without the purification procedure) and the sample sizesin

the two groups (i.e., 1,000 vs 1,000, 1,000 vs 500, and 1,000 vs 200).

In each DIF condition, there was a total of 4,000 items. For the

false positive study, the 3,400 unbiased items were used for the three

types of data sets. For the power study, the 600 biased items were used

for the three types of data sets. False positive rates and power were

14
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computed separately for each type of DIF data set (uniform, nonuniform,

or mixed) and each a level (.01 and .05).

False Positive Errors

Table 4 shows the ANOVA results of the one between two within

factor repeated-measures design. Tables 5, 6, and 7 present the

corresponding false positive rates and the number of items for each type

of data set that were used in this analysis.

Insert Table 4, 5, 6, and 7 here

Table 4 shows that there were significant three-way interaction

effects and two-way interactions although most main effects were

significant. Usually, when there are significant higher order

interactions, it is meaningless to discuss main effects. However, the

descriptive statistics for all the effects may help to interpret the results.

Tables 5, 6 and 7 show that the two-step purification procedure

reduced the false positive rates for the AMD method in most conditions

but it did not for the MH and the UMH methods. Although the AMD

method had the lower false positive error rates, it produced rates at a =

.01 at least 1.5 times higher than the nominal a levels. The false positive

15
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rates were worst in all conditions for the UMH. For instance, for the

UMH in the 1,000 vs. 1,000 sample size comparison of nonuniform data

sets at a = .01, the false positive rates in the nonuniform DIF condition

were 12 times as much as the nominal a levels for both before and after

purification (See Table 6). In both steps (before and after purification),

all methods tended to have false positive rates higher than the nominal a

levels.

One noticeable result was that in both steps (before and after

purification) the UMH method had high false positive error rates in all

conditions. Additionally, the AMD method has the lowest false positive

error rates in most conditions. The other noticeable result was that as

sample sizes were decreased, the false positive error rates decreased for

the MH method but it increased for the UMH method (See Tables 5, 6,

and 7).

Power Study

Table 8 presents the ANOVA results of the one between two within

factor repeated-measures design for the detection rates in each factor and

at each level of a. Tables 9, 10, and 11 show the corresponding mean

detection rates and the number of items for uniform, nonuniform, and

mixed data sets, respectively.
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Insert Tables 8, 9, 10 and 11 here

Table 8 shows that there were significant main effects and

interaction effects in all but two three-way interaction and two two-way

interaction effects. All three-way and two-way interactions, excluding

the mixed data set at a = .01 and the nonuniform data set at a = .05,

were significant.

Tables 9, 10, and 11 show that the deterioration of power from step

1 (before purification) to step 2 (after purification) was larger for the MH

method in the 1,000 vs. 500 sample size comparison of the uniform data

sets for a = .05 than for the others while the UMH and the AMD methods

had larger differences between step 1 and step 2 in the 1,000 vs. 1,000

sample size comparison of the uniform DIF condition at a = .05---that is,

the deterioration rates were 60% for the MH method in the 1,000 vs. 500

sample size comparison of the uniform data sets for a = .05; and it was

47% and 22% for the UMH and the AMD methods in the 1,000 vs. 1,000

sample size comparison of the uniform DIF condition at a = .05,

respectively.

The results show that the MH method had more power in step 1

17
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(before purification) but the AMD method had more power in step 2 (after

purification) of the 1,000 vs. 1,000 sample size comparison (See Tables 9,

10, and 11). As sample size decreased, the detection rate dropped

dramatically for all the methods, especially on uniform DIF data sets.

Discussion and Conclusion

As with any simulation study, conclusions are limited to the

conditions in the simulation. Two particular features of this study are of

note. First, ability distribution means were different for both the

reference and focal groups. Second, the nonuniform DIF conditions were

favorable to the MH method because all difficulty parameters for

nonuniform DIF conditions were out of the mid-ranges of the combined

ability distribution for both groups. Consequently, the ICC curves of the

two groups crossed well above or below the mean of the combined

distribution of two groups. Given these conditions,---unequal group

means and absence of mid-range difficulty parameter for both groups-- -

the MH canceling effect for nonuniform DIF is minimal.

In simulating DIF, there are two versions of the null hypothesis

which vary as a function of the context formed by the other items in the

18
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test when, as is usually the case, the test is the matching variable. First,

the null hypothesis is true for the studied item and true for all items in

the test constituting the matching variable. Second, the null hypothesis

is true for the studied item, but false for one or more of the other items in

the test comprising the matching variable. Our findings regarding false

positives apply only to the second of these two situations.

The rationale for the purification approach is that items with DIF

will degrade ability estimation, which in turn may adversely affect the

detection of DIF. When ability distributions for both groups are the

same, only DIF can "contaminate" the items leading to identification in

the first step of the purification procedure. Therefore, the removal of

items with DIF may reduce the false positives or increase power.

Previous simulation studies (Kwak, 1994; Kwak, Davenport, & Davison,

1997; Miller, & Oshima, 1992) supported this argument. However, when

ability distributions differ, DIF may be compounded with impact. Non-

DIF items may be removed in the first step of the purification procedure

because they contain impact. Therefore, the removal of items identified

in the first step may result in lower power for the second step of the

purification procedure.

Three major conclusions arise from this study. First, when the

ability distributions for the two groups are different, the two-step

19
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purification procedure increases the false positive error rates for the MH

and the UMH methods and reduces the power for all the three methods.

Second, the Mantel-Haenszel method was more powerful than either the

absolute mean deviation statistic or the unsigned Mantel-Haenszel

method for detecting uniform DIF, and nonuniform DIF when the

interaction occurs outside of the middle range of the combined ability

distribution for the two groups. Third, as sample size decreases, the

detection rate of DIF also decreases.

In the past, uniform DIF has been of the greatest concern to

researchers. However, nonuniform DIF has emerged in empirical data

(Bennett, Rock, & Kaplan, 1987; Ellis, 1989; Hambleton & Rogers, 1989;

Mellenbergh, 1983) and Millsap (1995) shows how nonuniform DIF can

readily emerge in practical applications. Nonuniform DIF cannot be

ignored. In our data, both the absolute mean deviation statistic and the

MH method yielded reasonably high detection rates of nonuniform DIF.

Given our findings, those using chi-square based methods may

want to combine the Mantel-Haenszel with the absolute mean deviation

statistic. The latter seems to provide smaller false positive error rates

and may even be a similar or more powerful test when nonuniform DIF

exists.

20 ..
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Table 1

Data for the jth Matched Set of Members of High Proportion Correct

(H) and Low Proportion Correct (L) Groups on the Studied Item

Group
H
L

Total

Score on Studied Item
1 0 Total

Ho, N,
N,,

N, N,



Table 2

Data for the jth Matched Set of Members of Reference (R) and Focal

(F) Groups on the Studied Item

Score on Studied Item
Group 1 0 Total

R A, B1 NR,

F C, D, Ni.,

Total 1V1i 11, 11;



Table 3

Item Parameters Used to Generate Items with DIF (c Values for Both

Reference and Focal Groups Were Fixed at .2.)

Data Set with DIF
Condition of Item Reference Focal

Parametr b, a, b, a,
Uniform

Low b, Low a -1.70 0.70 -1.12 0.70
High a -1.70 1.30 -1.18 1.30

Moderate b, Low a -0.30 0.70 0.23 0.70
High a -0.30 1.30 0.20 1.30

High b, Low a 1.30 0.70 1.90 0.70
High a 1.30 1.30 1.82 1.30

Nonuniform
Low b, Low a -1.40 0.32 -1.30 0.56

High a -1.76 1.20 -1.24 1.85
Moderate b, Low a 0 0.42 0 0.69

High a 0 1.65 0 0.80
High b, Low a 1.30 0.35 1.40 0.59

High a 1.25 1.20 1.75 1.56

Mixed
Low b, Moderate a -1.74 1.00 -1.20 1.00
High b 1.20 1.00 1.74 1.00
Low b, Low a -1.50 0.41 -1.50 0.73
High b 1.50 0.41 1.50 0.73
Moderate b, Low a -0.05 0.32 0.05 0.53

High a -0.20 1.00 0.20 1.83

,30



Table 4

J' Ratio and p Value of the One Between Two Within Factor Repeated-

Measure Design for the False Positive Rate

Data Set
with DIF Factor

a = .01 a = .05
F p F p

Uniform S 3.27 .038 3.38 .034
P 40.02 .000 179.73 .000
M 445.65 .000 837.00 .000

S x P 3.44 .032 2.69 .068
S x M 28.01 .000 49.17 .000
P x M 64.25 .000 131.54 .000

S x P x M 5.94 .000 19.68 .000

Nonuniform S 14.21 .000 12.97 .000
P 4.00 .045 77.21 .000
M 702.83 .000 1361.26 .000

S x P 10.84 .000 12.70 .000
S x M 16.21 .000 49.64 .000
P x M 44.08 .000 126.75 .000

S x P x M 7.07 .000 11.25 .000

Mixed S 1.06 .347 3.96 .019
P 37.65 .000 216.44 .000
M 570.28 .000 1099.77 .000

S x P 11.65 .000 13.79 .000
S x M 25.36 .000 65.13 .000
P x M 73.71 .000 153.22 .000

S x P x M 10.14 .000 31.47 .000

S: sample size
P: two-step purification procedure
M: method



Table 5

The False Positive Rate of Uniform DIF Data Set for Factors at Each

Level of a

Sample Size
Purification a = .01 a = .05
and Method

1000 vs 1000 Step 1
MH .030 3,400 .087 3,400

UMH .058 3,400 .146 3,400
AMD .020 3,400 .063 3,400

Step 2
MH .031 3,400 .099 3,400

UMH .067 3,400 .174 3,400
AMD .017 3,400 .070 3,400

1000 vs 500 Step 1
MH .021 3,400 .073 3,400

UMH .059 3,400 .146 3,400
AMD .019 3,400 .069 3,400

Step 2
MH .021 3,400 .077 3,400

UMH .071 3,400 .189 3,400
AMD .018 3,400 .072 3,400

1000 vs 200 Step 1
MH .012 3,400 .058 3,400

UMH .083 3,400 .190 3,400
AMD .021 3,400 .069 3,400

Step 2
MH .014 3,400 .061 3,400

UMH .108 3,400 .265 3,400
AMD .015 3,400 .059 3,400



Table 6

The False Positive Rate of Nonuniform DIF Data Set for Factors at

Each Level of a

Sample Size
Purification a = .01 a = .05
and Method

1000 vs 1000 Step 1
MH .071 3,400 .178 3,400

UMH .122 3,400 .252 3,400
AMD .028 3,400 .094 3,400

Step 2
MH .071 3,400 .187 3,400

UMH .126 3,400 .281 3,400
AMD .025 3,400 .075 3,400

1000 vs 500 Step 1
MH .046 3,400 .130 3,400

UMH .098 3,400 .234 3,400
AMD .027 3,400 .086 3,400

Step 2
MH .044 3,400 .138 3,400

UMH .105 3,400 .262 3,400
AMD .016 3,400 .074 3,400

1000 vs 200 Step 1
MH .026 3,400 .085 3,400

UMH .106 3,400 .253 3,400
AMD .019 3,400 .072 3,400

Step 2
MH .025 3,400 .085 3,400

UMH .129 3,400 .320 3,400
AMD .016 3,400 .071 3,400

3 3



Table 7

The False Positive Tate of Mixed DIF Data Set for Factors at Each

Level of a

Sample Size
Purification a = .01 a = .05
and Method p N p N

1000 vs 1000 Step 1
MH .044 3,400 .129 3,400

UMH .080 3,400 .190 3,400
AMD .023 3,400 .071 3,400

Step 2
MH .046 3,400 .142 3,400

UMH .084 3,400 .214 3,400
AMD .016 3,400 .075 3,400

1000 vs 500 Step 1
MH .032 3,400 .095 3,400

UMH .074 3,400 .181 3,400
AMD .019 3,400 .069 3,400

Step 2
MH .033 3,400 .102 3,400

UMH .095 3,400 .227 3,400
AMD .018 3,400 .069 3,400

1000 vs 200 Step 1
MH .020 3,400 .069 3,400

UMH .097 3,400 .224 3,400
AMD .021 3,400 .075 3,400

Step 2
MH .019 3,400 .074 3,400

UMH .126 3,400 .318 3,400
AMD .017 3,400 .069 3,400



Table 8

F Ratio and p Value of the One Between Two Within Factor Repeated-

Measure Design for Power

Data Set
with DIF Factor

a = .01 a = .05

Uniform S 160.98 .000 224.01 .000
P 275.93 .000 494.12 .000
M 438.87 .000 629.45 .000

S x P 39.96 .000 40.04 .000
S x M 31.98 .000 23.60 .000
P x M 41.50 .000 91.38 .000

SxPxM 4.06 .003 7.56 .000

Nonuniform 98.72 .000 105.62 .000
P 2.74 .098 5.79 .016
M 556.86 .000 590.64 .000

S x P 3.65 .026 1.30 .274
S x M 31.80 .000 43.09 .000
P x M .01 .989 8.79 .000

SxPxM 1.96 .098 .81 .521

Mixed S 172.86 .000 176.32 .000
P 59.12 .000 140.86 .000
M 589.85 .000 568.50 .000

S x P 1.28 .278 15.42 .000
S x M 35.70 .000 53.36 .000
P x M 11.12 .000 21.22 .000

SxPxM 1.18 .318 3.32 .010

S: sample size
P: two-step purification procedure
M: method



Table 9

The Power of Uniform DIF Data Set for Factors at Each Level of a

Sample Size
Purification a = .01 a = .05
and Method p N p N

1000 vs 1000 Step 1
MH .573 600 .810 600

UMH .372 600 .587 600
AMD .410 600 .647 600

Step 2
MH .343 600 .468 600

UMH .205 600 .313 600
AMD .348 600 .492 600

1000 vs 500 Step 1
MH .373 600 .620 600

UMH .165 600 .318 600
AMD .312 600 .503 600

Step 2
MH .237 600 .350 600

UMH .075 600 .152 600
AMD .275 600 .363 600

1000 vs 200 Step 1
MH .172 600 .357 600

UMH .020 600 .075 600
AMD .037 600 .207 600

Step 2
MH .082 600 .190 600

UMH .015 600 .045 600
AMD .023 600 .182 600



Table 10

The Power of Nonuniform DIF Data Set for Factors at Each Level of a

Sample Size
Purification
and Method

a = .01 a = .05
p N p N

1000 vs 1000 Step 1
MH .695 600 .782 600

UMH .543 600 .627 600
AMD .662 600 .778 600

Step 2
MH .700 600 .760 600

UMH .552 600 .640 600
AMD .667 600 .782 600

1000 vs 500 Step 1
MH .640 600 .725 600

UMH .417 600 .495 600
AMD .598 600 .673 600

Step 2
MH .640 600 .677 600

UMH .378 600 .490 600
AMD .565 600 .667 600

1000 vs 200 Step 1
MH .505 600 .620 600

UMH .157 600 .203 600
AMD .343 600 .547 600

Step 2
MH .483 600 .558 600

UMH .162 600 .232 600
AMD .348 600 .535 600



Table 11

The Power of Mixed DIF Data Set for Factors at Each Level of a

Sample Size
Purification a = .01 a = .05
and Method p N p N

1000 vs 1000 Step 1
MH .682 600 .817 600

UMH .517 600 .673 600
AMD .583 600 .778 600

Step 2
MH .597 600 .652 600

UMH .475 600 .517 600
AMD .570 600 .671 600

1000 vs 500 Step 1
MH .640 600 .678 600

UMH .417 600 .393 600
AMD .598 600 .653 600

Step 2
MH .640 600 .580 600

UMH .378 600 .298 600
AMD .565 600 .578 600

1000 vs 200 Step 1
MH .508 600 .532 600

UMH .157 600 .060 600
AMD .343 600 .463 600

Step 2
MH .483 600 .433 600

UMH .162 600 .058 600
AMD .348 600 .460 600
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